Genome mining: Prediction of lipopeptides and polyketides from Bacillus and related Firmicutes

نویسندگان

  • Gajender Aleti
  • Angela Sessitsch
  • Günter Brader
چکیده

Bacillus and related genera in the Bacillales within the Firmicutes harbor a variety of secondary metabolite gene clusters encoding polyketide synthases and non-ribosomal peptide synthetases responsible for remarkable diverse number of polyketides (PKs) and lipopeptides (LPs). These compounds may be utilized for medical and agricultural applications. Here, we summarize the knowledge on structural diversity and underlying gene clusters of LPs and PKs in the Bacillales. Moreover, we evaluate by using published prediction tools the potential metabolic capacity of these bacteria to produce type I PKs or LPs. The huge sequence repository of bacterial genomes and metagenomes provides the basis for such genome-mining to reveal the potential for novel structurally diverse secondary metabolites. The otherwise cumbersome task to isolate often unstable PKs and deduce their structure can be streamlined. Using web based prediction tools, we identified here several novel clusters of PKs and LPs from genomes deposited in the database. Our analysis suggests that a substantial fraction of predicted LPs and type I PKs are uncharacterized, and their functions remain to be studied. Known and predicted LPs and PKs occurred in the majority of the plant associated genera, predominantly in Bacillus and Paenibacillus. Surprisingly, many genera from other environments contain no or few of such compounds indicating the role of these secondary metabolites in plant-associated niches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome sequence of the plant growth promoting strain Bacillus amyloliquefaciens subsp. plantarum B9601-Y2 and expression of mersacidin and other secondary metabolites.

The plant-associated Bacillus amyloliquefaciens subsp. plantarum strain B9601-Y2, isolated from wheat rhizosphere, is a powerful plant growth-promoting rhizobacterium. Its relative large genome size of 4.24Mbp, exceeding that of other representatives of the B. amyloliquefaciens subsp. plantarum taxon, is mainly due to the presence of 18 DNA-islands containing remnants of phages, a unique restri...

متن کامل

Draft Genome Sequence of Bacillus velezensis B6, a Rhizobacterium That Can Control Plant Diseases

The draft genome of Bacillus velezensis strain B6, a rhizobacterium with good biocontrol performance isolated from soil in China, was sequenced. The assembly comprises 32 scaffolds with a total size of 3.88 Mb. Gene clusters coding either ribosomally encoded bacteriocins or nonribosomally encoded antimicrobial polyketides and lipopeptides in the genome may contribute to plant disease control.

متن کامل

Genome Sequencing of Bacillus subtilis Strain XF-1 with High Efficiency in the Suppression of Plasmodiophora brassicae

The genome of the rhizobacterium Bacillus subtilis XF-1 is 4.06 Mb in size and harbors 3,853 coding sequences (CDS). Giant gene clusters were dedicated to the nonribosomal synthesis of antimicrobial lipopeptides and polyketides. Remarkably, XF-1 possesses a gene cluster involved in the synthesis of chitosanase that is related to the suppression of the pathogen Plasmodiophora brassicae.

متن کامل

Draft Genome Sequence of Bacillus atrophaeus UCMB-5137, a Plant Growth-Promoting Rhizobacterium

Bacillus atrophaeus UCMB-5137 shows an extraordinary activity in root colonization and plant and crop protection. Its draft genome sequence comprises 21 contigs of 4.11 Mb, harboring 4,167 coding sequences (CDS). The genome carries several genes encoding antimicrobial lipopeptides and polyketides. Multiple horizontally acquired genes of possible importance for plant colonization were also found.

متن کامل

The Rhizobacterium Bacillus amyloliquefaciens subsp. plantarum NAU-B3 Contains a Large Inversion within the Central Portion of the Genome

The genome of rhizobacterium Bacillus amyloliquefaciens subsp. plantarum strain NAU-B3 is 4,196,170 bp in size and harbors 4,001 genes. Nine giant gene clusters are dedicated to the nonribosomal synthesis of antimicrobial lipopeptides and polyketides. Remarkably, NAU_B3 contains a large inversion within the central portion of the genome.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2015